Formation of metastable phases by spinodal decomposition

نویسندگان

  • Ricard Alert
  • Pietro Tierno
  • Jaume Casademunt
چکیده

Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinodal decomposition related to age-hardening and cuboidal structures in a dental low-carat gold alloy with relatively high Cu/Ag content ratio

A dental Au–Ag–Cu–Pd alloy with a relatively low Au content and a high Cu/Ag content ratio was examined to determine the correlation between the microstructural changes by the spinodal decomposition and age-hardening behaviour using a hardness test, X-ray diffraction study, field emission scanning electron microscopy and energy-dispersive X-ray spectrometry. Separation of the parent α0 phase oc...

متن کامل

Formation of Poly(vinylidene fluoride) Nanofibers Part II: the elaboration of incompatibility in the electrospinning of its solutions

Poly(vinylidene fluoride) (PVDF) fibers with two molecular weights were prepared via electrospinning process. In this process, the concentration of spinning depended drastically on the gelation process. Also, it was experimentally smaller than obtained concentration in the solution entanglement number approach (SENA). Proof of this incompatibility was explained by the properties of PVDF a...

متن کامل

Pattern formation mechanisms in sphere-forming diblock copolymer thin films

The order-disorder transition of a sphere-forming block copolymer thin film was numerically studied through a Cahn-Hilliard model. Simulations show that the fundamental mechanisms of pattern formation are spinodal decomposition and nucleation and growth. The range of validity of each relaxation process is controlled by the spinodal and order-disorder temperatures. The initial stages of spinodal...

متن کامل

Age-Hardenability and Related Microstructural Changes During and After Phase Transformation in an Au-Ag-Cu-based Dental Alloy

The aim of this study was to clarify how the microstructural changes during and after phase transformation determine the age-hardenability of an Au-Ag-Cu-based dental alloy. The rapid increase in hardness in the initial stage was the result of rapid atomic diffusion by spinodal decomposition into metastable Ag-rich’ and Cu-rich’ phases. The constant hardening after apparent initial hardening wa...

متن کامل

Direct observation of spinodal decomposition phenomena in InAlN alloys during in-situ STEM heating

The spinodal decomposition and thermal stability of thin In0.72Al0.28N layers and In0.72Al0.28N/AlN superlattices with AlN(0001) templates on Al2O3(0001) substrates was investigated by in-situ heating up to 900 °C. The thermally activated structural and chemical evolution was investigated in both plan-view and cross-sectional geometries by scanning transmission electron microscopy in combinatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016